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RADIATION BOUNDARY CONDITIONS 
FOR THE TWO-DIMENSIONAL WAVE EQUATION 

FROM A VARIATIONAL PRINCIPLE 

JAN BROEZE AND EDWIN F. G. VAN DAALEN 

ABSTRACT. A variational principle is used to derive a new radiation boundary 
condition for the two-dimensional wave equation. This boundary condition is 
obtained from an expression for the local energy flux velocity on the boundary 
in normal direction. The wellposedness of the wave equation with this boundary 
condition is analyzed by investigating the energy of the system. Results obtained 
with this (nonlinear) boundary condition are compared with those obtained with 
the (linear) first-order absorbing boundary condition suggested by Higdon. 

In an accompanying paper the underlying theory is presented. 

1. INTRODUCTION 

Radiation (or absorbing) boundary conditions have the property that wave 
motions from the interior of the domain pass through the boundary with small 
reflections. Such boundary conditions are used to simulate artificial open bound- 
aries, which may be introduced to reduce the computational domain. 

Several methods to derive radiation boundary conditions for the two-dimen- 
sional wave equation are known. 

Engquist and Majda [3, 4] have derived a perfectly absorbing boundary con- 
dition for plane waves travelling towards the boundary. However, this boundary 
condition is nonlocal in space and in time. Therefore, they developed a hier- 
archy of local boundary conditions, which approximate the perfectly absorbing 
boundary condition. 

Higdon [5, 6] developed absorbing boundary conditions based on the disper- 
sion relation for the discrete problem. His aim was to reduce the reflections for 
a priori known solutions as much as possible. 

The boundary conditions developed by Bayliss and Turkel [1] are based on 
the behavior of the solution in the neighborhood of infinity. 

The boundary conditions mentioned above have been developed for a certain 
class of solutions, i.e., the solution of the problem is assumed to have a certain 
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form beforehand. In this paper, radiation boundary conditions will not be de- 
rived under such assumptions, but by considering the energy transmission at 
the boundaries. The velocity of the energy on the boundaries in normal direc- 
tion can be found by assuming the domain to be time-dependent. A radiation 
boundary condition is then found by substituting this velocity into the general 
boundary condition derived from the variational principle, as shown in [2]. 

It will be shown later on that the new boundary condition can be considered 
an extension of Higdon's first-order absorbing boundary condition. In Higdon's 
boundary conditions the absorption direction must be prescribed, whereas in 
our boundary condition the absorption direction is determined from the local 
solution near the boundary. 

The outline of this paper is as follows. The variational principle will be 
applied to the problem in ?2. In ?3 we will present some boundary conditions 
which provide a well-posed problem. The quality of the boundary conditions 
for radiating waves will be analyzed in ?4, and test results will be presented in 
?5. 

2. THE VARIATIONAL METHOD FOR THE TWO-DIMENSIONAL WAVE EQUATION 

In this section the variational method will be used to derive radiation bound- 
ary conditions for the two-dimensional wave equation. 

In order to derive radiation boundary condition, we will first consider a time- 
dependent domain Q, where the evolution of Q is assumed to be given be- 
forehand. Expressions for the velocity of the boundary of Q will be given in 
the next section. 

Consider the two-dimensional wave equation 
(2.1) utt = Au, 
where A is the Laplace operator in two dimensions x and y. 

The action integral for this problem defined on a time-dependent domain Q 
is 

(2.2) I = JJ 2(Ut - (VU)2)d dt 

where T indicates a time interval and Q(t) indicates the time-dependent do- 
main in x, y-space. 

A variation bu of u in (2.2) provides a variation in the action integral I: 

cbuI = - JTJJ (utt - Au) 3udQ dt 

(2.3) + I t { JI(t) dutfu } dt - I I {VnUt + un }cu dS dt. 

In this equation, Vn represents the velocity of the boundary in normal direction 
(the normal n is pointing outward). 
- The second integral in the right-hand side of (2.3) integrates out to the bound- 

aries of the time interval T and vanishes if cu is assumed to vanish there. For 
the first variation of the action integral I to vanish for any variation cu, u 
must satisfy. the wave equation (2.1) on the interior of the domain and the 
boundary condition 
(2.4) un+vnut=O onaKQ. 
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or u must be prescribed on the boundaries (which corresponds to cu = 0 on 
the boundary OL) . 

Note that no conditions are imposed on the velocity of the boundary. Ob- 
viously, there is a degree of freedom in the system. We will derive additional 
boundary conditions for v, in the next section. 

We shall now investigate the wellposedness of (2.1) with boundary condition 
(2.4) on a boundary of a fixed domain, when the normal velocity does not 
necessarily vanish, simulating the boundary to be moving at that velocity. To 
this end, we will consider the energy integral given by 

(2.5) E = Jf 2j2 + (Vu)2) d . 

Differentiation of equation (2.5) with respect to time gives 

(2.6) dE Jj{utt-Vu}utdA + UnUtdS. 

If u satisfies the field equation, only energy outflow will occur if Un . Ut < 0 
on the boundary. This corresponds to a positive Vn in (2.4). Therefore, the 
problem is well posed (in the sense that the energy of the system does not 
increase) if (2.4) is used with Vn >_ 0. 

Next consider the generation of waves on a boundary, by imposing an external 
force f(x, y, t) on a part SI of the boundary OQ. The action integral for 
this problem is 

(2.7) I=11 1 (ju - ( Vu)2)d dt+ j f(x, y, t)u dS dt. 

The first variation of I vanishes for all variations 6u, if u satisfies (2.1) 
together with the boundary conditions 

(2.8a) Un+VnUt=f(x,y,t) onS1, 
(2.8b) Un + Vnut = 0 on 0Q\S1 . 

The right-hand side f in (2.8a) can be used to generate waves on a boundary 
part S1 . For appropriate Vn > 0 this condition also radiates waves from the 
interior of the domain. 

3. ExPRESSIONS FOR THE BOUNDARY VELOCITY 

In the previous section we found the outflow boundary condition (2.4) for the 
two-dimensional wave equation, where Vn must be positive for wellposedness 
of the problem. In the derivation of this boundary condition, the velocity Vn 
was assumed to be given. In this section we shall find expressions for this 
velocity in such a way that the boundary radiates outgoing waves. 

3.1. Boundary condition from conservation of energy and momentum. An expres- 
sion for Vn can be obtained by considering a time-dependent domain Q(t) 
with constant energy or with constant momentum in a certain direction. First 
we shall consider the energy on a time-dependent domain Q (t), 

(3.1) E = Jl(2 (U2 + (VU)2) da. 
2 t) 
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Differentiating equation (3.1) with respect to the time and applying Gauss' 
divergence theorem gives 

dE / {Utt- Au}utdA 
(3.2) dt Qt 

+ { Ut + Ovn(u2 +(Vu)) dS, 

where On is the velocity of the boundary in normal direction. The total amount 
of energy is conserved if the integrand in the last integral of (3.2) vanishes on 
the boundary. An expression for in in the derivatives of u is found in this 
way, and by substituting this velocity for Vn into (2.4), the following boundary 
condition is obtained (see also [2]): 

(3.3) LVn = '(u2 _(VU)2 )Vn = O. 

This equation is satisfied if we choose Vn = Vu'/(Vu)2 (positive for wellposed- 
ness of the problem) in (2.4): 

(3.4) Ut = -Un (Vu)2/un 

In [2] it is shown that the same boundary condition is obtained from conserva- 
tion of momentum in any direction on a time-dependent domain. 

3.2. Higdon's boundary condition. The first-order absorbing boundary condition 
proposed by Higdon [5] is of the form (2.4), with Vn = cos(a), where a is the 
angle of perfect absorption. Higdon's condition reads 

(3.5) Ut = -____ n, 
cos(a~) 

where jai < 7r/2 must hold for wellposedness of the problem (this can be 
derived from both our wellposedness theory and from Higdon's analysis). 

4. REFLECTION PROPERTIES OF THE BOUNDARY CONDITIONS 

In this section we investigate the reflection properties of the boundary con- 
ditions mentioned in the previous section. 

First we investigate the reflection properties for one monochromatic wave. 
Boundary condition (3.4) is exact for one monochromatic radiating wave 

from any direction, without providing reflections. 
Boundary condition (3.5) perfectly radiates waves at an angle of incidence 

6 = ?a with the normal. For waves from other directions 0, the reflection 
coefficient R (the ratio of the amplitudes of the reflected wave and of the 
incident wave) is 

(4.1) R~~~~ cos(a) - cos(6) 
(4.1) R - cos(a) + cos(6) 

Next we investigate how the above boundary conditions radiate multiple 
waves. 

Boundary condition (3.5) is linear, so the reflection that it provides for mul- 
tiple waves is equal to the superposition of the reflections for the separate wave 
components. 
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The reflections provided by the nonlinear condition (3.4) for multiple waves 
cannot be analyzed by considering the reflections for each radiating wave sepa- 
rately, because of nonlinear interactions in this boundary condition. No appro- 
priate formulation has been found for the reflections. Therefore the quality of 
(3.4) for multiple waves will be investigated by tests in the next section. 

5. TEST RESULTS 

In this section we test the stability of the above-mentioned boundary condi- 
tions for the two-dimensional wave equation and discuss the reflections caused 
by the boundary conditions. 
5.1. Test model. The tests will be carried out on a rectangular equidistant grid. 
In the interior grid points, the wave equation is imposed with three-point cen- 
tral discretizations for the second-order derivatives. In this way an explicit 
expression is obtained for the value of u on a new time level. 

Second-order three-point discretizations are chosen for the first spatial deriva- 
tives on the boundaries. In order to prevent numerical instabilities, it is advan- 
tageous to use an implicit time integration scheme for the boundary conditions. 
For boundary condition (2.4) this can be achieved by determining v, on the 
previous time level from the expression in ?3.1, 

(5.1) Vn= //(U. 

This value can be substituted in equation (2.4), which can then be solved with 
an implicit scheme. However, Higdon [6] has shown that no instabilities are 
to be expected if the product of Vn and the time step is small enough. For 
practical reasons, an explicit scheme is therefore used, as long as no instabilities 
occur. 

A special treatment is necessary in the corner points, because no unique 
normal is defined there. Therefore, we define the normal to be directed along 
the bisection line of the adjacent boundaries. 

5.2. Results on plane waves. Plane waves are simulated by imposing equation 
(2.8) on the boundaries. The waves can be generated on two boundaries with 
a nonzero function f in the right-hand side of equation (2.8a), and we choose 
(2.8) on the other (radiating) boundaries. 

Boundary conditions (3.4) and (3.5) are tested for plane waves travelling at 
an angle 0 = r/6 and 0 = 7r/3 with the x-axis, with exact solution 
(5.2) u = cos(k * x - t), 
where k = (cos(0), sin(0))T. The tests were done with (5.2) as the initial 
condition at t = 0. 

The spatial domain is given by [0, 27r] x [0, 27r]. The mesh sizes are Ax = 
Ay = 7r/25, and the time step is At = Ax/10. For these values of Ax, Ay, and 
At, the discretization errors are less than 2% of the amplitude of the initial 
solution. 

In boundary condition (3.5), for each boundary, a is chosen such that the 
boundary condition is exact for incident waves at an angle 0 = 7r/6 with the 
x-axis. 

The maximum error in the results for 0 = 7r/6 after one period (t = 27r) 
is only due to discretization errors, and is below 2%. The maximum error for 
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FIGURE 1 
Errors after one period with boundary condition (3.5) for an in- 
cident wave (5.2) at 0 = 7r/3 

0 = 7r/3 with boundary condition (3.4) is also below 2%, but (3.5) provides 
larger errors (over 45%), as can be seen in Figure 1. 

The errors obtained with (3.5) are larger than the reflection coefficient (4.1) 
indicates. This is due to the fact that no reflections are included in the initial 
solution. 

Next we will test the radiation properties of these boundary conditions for a 
combination of two incident waves, 

(5.3) u = A1 cos(k, * x - t) + A2 cos(k2 * x - t +l), 

where ki = (cos(0i), sin(Oi))T and JJ denotes a phase shift of the second wave 
component. The angles O1 and 02 are 7r/6 and 7r/3 in these tests. 

The linear boundary condition (3.5) provides a reflection that is the superpo- 
sition of the reflections obtained from each wave component in (5.3) separately 
(see ?4). That is why for f6 = 0 the errors obtained with boundary condition 
(3.5) are the same as those in Figure 1. 

In the previous section we concluded that the reflections obtained with (3.4) 
are not equal to the superposition of the reflections from each wave component 
separately. Since the interaction in the boundary condition between the incident 
wave components will depend on /1, boundary condition (3.4) is tested for (5.3) 
with various choices of fi. The errors in the results obtained after one period 
(t = 2X) with boundary condition (3.4) for fi = 0, f? = r/2, and ? = Xr are 
given in Figures 2a, 2b, and 2c, respectively. 

The figures show that the errors in the results depend strongly on the phase 
shift ,P. The maximum errors for IJ = 0, 7r/2, and Xr are 0.09, 0.22, and 
0.34, respectively. 

In order to make a good comparison between the quality of the boundary 
conditions, the errors from the above tests are compared with those obtained 
with boundary condition (3.5), where a has an optimum value, i.e., a = ir/4. 
The errors obtained with incident wave (5.3) with ,6 = Xr are shown in Figure 3. 
The maximum error in this test is about 0.40, which is larger than the maximum 
error obtained with boundary condition (3.4), as can be seen from Figures 2c 
and 3. 
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FIGURE 2 
Errors after one period with boundary condition (3.4) for incident 
waves (5.3) with A1 = A2 = 1, 01 = 7r/6, 62 = 7r/3, and /1 = 
0,1 = 7r/2, and 7. = ir, respectively. (a) (b) (c) 
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FIGURE 3 
Errors after one period with boundary condition (3.5) for the 
incident wave (5.3) with A1 = A2 = 1, 61 = 7r/6, 02 = 7r/3, 
and IJ = . 

We conclude that, in general, equation (3.4) provides smaller reflections than 
(3.5) does for plane waves. The reflections obtained with equation (3.4) depend 
on the interactions of multiple incident waves on the boundary, which is not 
the case for (3.5), but the maximum error obtained with (3.4) is smaller than 
the errors obtained with (3.5). 

5.3. Reflections for an initial disturbance. In this subsection the quality of 
boundary conditions (3.4) and (3.5) will be tested numerically for an initial 
disturbance flowing out of the domain. 

The problem is described in [5]. The initial disturbance is 

(5.4) u(x, y, 0) = f exp(-30r2) (r < 0.5), 
10 (r? 0.5),~ 

(5.5) ut(x, y, O) = O. 

where r2 = (x - 0.5)2 +y2 . As Higdon [5] notices, this disturbance is composed 
of Fourier modes corresponding to all possible directions of propagation. 
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The solution to the wave equation will be computed on the domain 

Q = {(x,yA): O< x <3, -2.5 < y<2.5}, 

with boundary conditions (3.4) and (3.5) at x = 0, respectively. The solution 
on the domain Qi, will be compared with the solution on the larger domain 

Q12 = {(x, Y) : -2 < x < 2,~ -2.5 < y < 2.5}. 

The domains Qi and Q2 are such that from t = 0 until 2, reflections will 
occur only from the boundary conditions on x = 0, and the solution on the 
larger domain Q2 is used to measure the reflections from that boundary. 

The errors in the computations with boundary conditions (3.4) and (3.5) 
(with a = 0) at t = 1.5 are given in Figure 4. 

The figures show that the errors in the solutions with boundary conditions 
(3.4) and (3.5) are of the same magnitude. Compared to (3.4), boundary con- 
dition (3.5) gives a poor representation of the solution near the boundary. This 
is due to the fact that in boundary condition (3.5) only normal derivatives (and 
no tangential derivatives) are included. 

The development of the energy of the errors with boundary condition (3.4) 
and (3.5) (with a = 0 and a = r/6) is given in Figure 5. It can be seen that 
the energy of the errors obtained with (3.4) is smaller than the energy of the 
errors with (3.5), for a = 0 as well as for a = r/6. This is due to the fact that 
after a longer period the wave is travelling nearly tangentially to the boundary 
and is poorly simulated with boundary condition (3.5). 

Imposing boundary condition (3.5) with a directed toward the center of the 
disturbance (x, y) = (0.5, 0) gives lower reflections than (3.4) does. However, 
this approach is only possible in simple problems where such details of the 
solution are known beforehand, whereas our condition has been developed for 
the situations when little is known about the solution of the system. 

2. 
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FIGURE 4a 
Errors at t = 1.5 with boundary condition (3.4) for initial dis- 
turbance (5.3) 
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FIGURE 4b 
Errors at t = 1.5 with boundary condition (3.5) (a = 0) for 
initial disturbance (5.3) 

0.05 

0.04 U 1) 

> 0.03 

or ~~~~~~~~~~~~~~~~~~(I II) 
0.02 - 

0.01 

0.080 0.5 1.0 1.5 2.0 

--TIK 

FIGURE 5 
Energy of the reflections for incident wave (5.3); boundary con- 
dition (3.4): (I), boundary condition (3.5): (II) (a = 0), (III) 
(a = ir/6). 

We conclude that the solution obtained with boundary condition (3.4) is 
better than the solution obtained with (3.5) for the test case. 

6. CONCLUSIONS 

We conclude that the boundary conditions (3.4) and (3.5) provide reflections 
that are smaller than the incident waves. The new nonlinear boundary condition 
(3.4) can be used very well for radiating waves in one direction. The linear 
boundary condition (3.5) radiates waves travelling in a certain direction too, but 
the propagation direction must be known beforehand. The overall impression 
is that the boundary condition (3.4) provides lower reflections than (3.5) does. 
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